If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+153x-180=0
a = 11; b = 153; c = -180;
Δ = b2-4ac
Δ = 1532-4·11·(-180)
Δ = 31329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{31329}=177$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(153)-177}{2*11}=\frac{-330}{22} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(153)+177}{2*11}=\frac{24}{22} =1+1/11 $
| (2x)(2)=120 | | -12+14x=14x-12 | | 4(z+14)=76 | | 2(5x+8)=-15+1 | | 4-3t=16 | | 4(2x–3)=20 | | k-90/8=1 | | 6=u+8/4 | | 32=-12+4g | | 32=–12+4g | | 8c-14=42 | | w/10+61=70 | | h/3+9=10 | | 9x=-15+2x | | 11=23-3y | | 8x2−10x+15=0 | | 4k+3k=240 | | 4=0.5(x)^2 | | 9(t-1)=90 | | 7k-18=8k | | h/4+17=20 | | 16-6y=10 | | y+2=6+12 | | 3x=43-40+6 | | -16.8y=-8.4 | | 0=2y^2-y-15 | | -5-5(8v-2)=85 | | g^2=144g2=144 | | -5x+45=-61 | | 110=-8d=6 | | d=6,20-2d | | 7-m/4=21 |